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a b s t r a c t

This paper presents the coarse-grid direct numerical simulation (c-DNS) of forced turbulent heat convec-
tion in a straight square duct (SSD) at a bulk Reynolds number of 104. The temperature was considered as
a passive scalar due to the neglect of the buoyancy effect. This c-DNS based on the recent nonstandard
analysis of turbulence was carried out in a staggered grid system with a projection method on the basis
of finite difference. To reduce numerical errors due to the staggered grid arrangement and enhance the
finite difference accuracy, the grid-dependent interpolation remainders were derived in the calculation
of cross-convection velocities by using Taylor expansion. These remainders were used to design an
improved fourth-order upwind scheme for the finite difference of convection terms. The c-DNS results
show that the novel numerical scheme can give satisfactory solutions of the turbulent SSD flow with pas-
sive scalar transport under an isoflux condition. The predicted mean Nusselt number is excellently con-
sistent with the value based on the published correlations. The effect of the mean secondary flow can
significantly increase the ratio between the temperature and velocity dissipation time scales in the corner
region between the mean secondary counter-rotating vortices.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The forced turbulent heat convection in a straight square duct
(SSD) is one of the fundamental problems in thermal science and
fluid mechanics. This forced heat convection is dominated by the
turbulent flow in the SSD, which has a remarkable change in flow
structure due to the existence of the so-called Prandtl’s second
kind secondary flows [1]. Such Prandtl’s second kind secondary
flow has a significant effect on the transport of heat and momen-
tum as revealed by the recent large eddy simulation (LES) [2].

As revealed by early measurements [3], the independent sec-
ondary flow circulation zones are separated by the corner bisec-
tors, but the flow pattern is not so complex as inferred from the
distortion of the longitudinal flow. The secondary-flow velocities
decrease with Reynolds number when they are normalized by
either the bulk mean velocity or the axial mean-flow velocity at
the channel centreline. Further work [4] has shown that in the
planes normal to the axial flow direction, traces of Reynolds stress
on principal planes are not tangent and normal to lines of constant
axial mean-flow velocity. The secondary flow is the result of small
differences in magnitude of opposing forces exerted by the Rey-
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nolds stresses and static pressure gradients on planes normal to
the axial flow direction. Other experimental results for the SSD
flow can be found in Refs. [5,6].

Among the flow simulations, to calculate the fully developed
turbulent flows in square, rectangular and trapezoidal ducts, an
algebraic stress model for the secondary flow of the second kind
with the k� �model was used by Nakayama et al. [7], emphasizing
the local structures of turbulence to reveal full features of the tur-
bulence model. The turbulent convective heat transfer in a SSD has
been a hot topic in the numerical studies, some examples can be
found in the work based on the algebraic stress model of turbu-
lence [8], in those focusing on the effect of rib roughened wall
[9–11], and on the effect of a square bar detached from the wall
[12].

The recent contributions to computational fluid dynamics were
those using large eddy simulation(LES) [13–19] and direct numer-
ical simulation (DNS) [20–23]. In particular, Vázquez and Métais
[15] predicted the asymmetrical wall heating and the fluid com-
pressibility effects. For the case of strongest heating, near the
heated wall, a saturation of the spanwise wavelength of the streaky
system could be observed. Studies on turbulent channel flows by
computations [24–30], and by experiments [31–34] have been car-
ried out, since the earlier DNS [20] indicated that turbulent statis-
tics along the wall bisectors agrees well with plane channel data
despite the influence of the sidewalls in the former flow.

As reported in our previous work [35,36], the traditional means
of DNS should use a very fine grid system causing the computa-
tional demands exceed the capability of a personal computer, we
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Nomenclature

A;B;C;D coefficients of finite difference
CD coefficient in turbulence model
cp specific heat at constant pressure (J=kg K)
f mean friction factor
H duct section side length
I linear interpolation operator
ku turbulence kinetic energy
kh temperature variance
Nuav mean Nusselt number in Eq. (9)
p normalized pressure
Pr Prandtl number
Qw heat transfer rate per unit area (W=m2)
u normalized velocity vector
R time ratio in Eq. (17)
Re balk mean Reynolds number

Res friction Reynolds number
T temperature
Ts mean friction temperature (K)
u;v ;w normalized velocity components
Um balk mean velocity (m=s)
us mean friction velocity (m=s)
x; y; z Cartesian coordinates
yþ ¼ ðyþ 0:5Þus=m, wall coordinate
Hþ � hþ=13, normalized temperature
m kinematic viscosity of fluid (m2=s)
�u dissipation rate of ku

�h dissipation rate of kh

su velocity dissipation time scale
sh temperature dissipation time scale
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incline to believe that the nonstandard analysis of turbulence pre-
sented by Wu [37–39] is more computationally efficient. This non-
standard analysis allows the use of c-DNS to obtain relatively
accurate results. This suggests that the c-DNS is a promising tech-
nique in computational fluid dynamics(CFD) as proved by the re-
cent work [40].

This paper presents the c-DNS results of the forced turbulent
heat convection in SSD at Re ¼ 104 in which the temperature
was taken as a passive scalar and the buoyancy effect was com-
pletely ignored. The governing equations were solved numerically
by a projection method based on a finite difference scheme [41],
which was improved by increasing the accuracy in the calculation
of cross-convection velocities. For the sake of convenience, it is as-
sumed that the flow Mach number is lower so that the air flow can
be taken as incompressible; the temperature dependence of the air
thermal–physical properties can be ignored. Since heating was in a
constant heat flux (isoflux) mode, there should be an additional
term for streamwise-velocity-dependent source in the energy
equation to reflect the isoflux heating effect, as done in the previ-
ous work [28]. In addition to the improvement of the upwind finite
difference scheme, we also consider calculating the mean Nusselt
number, and revealing of the statistical characteristics of turbulent
flow in the c-DNS work.
2. Governing equations

We assume that the origin of the cartesian coordinate system is
located at the central point of the computational domain, and xðx1Þ,
yðx2Þ and zðx3Þ represent the coordinates in the streamwise, trans-
verse and spanwise directions. We further assume that the air flow
in the SSD is heated under an isoflux condition, implying that the
time-averaged wall heat flux does not change in the x-direction.
This heating mode is equivalent to an assumption that the time-
averaged wall temperature hTwi, should increase linearly in
x-direction, due to the global heat balance for a fully developed
thermal field. Therefore, the bulk mean temperature hTmi should
also increase linearly in the x-direction, i.e. @hTmi=@x ¼
@hTwi=@x ¼ const.

Let 13Ts denote the temperature scale, the dimensionless tem-
perature is defined as:

Hþ ¼ ðhTwi � TÞ=ð13TsÞ � hþ=13 ð1Þ

where Ts is the friction temperature defined by Qw=ðqcpusÞ. The fac-
tor 13 is used for the convenience of synchronizing the computa-
tion, i.e. it allows the solution of temperature with the same time
step used in the velocity calculation. Further choose the bulk mean
velocity Um and the side length H as the velocity and the length
scales, let q denote the air density, the time and pressure scales
should be H=Um and qU2

m. The energy conservation shows that the
dimensionless temperature Hþ satisfies

Hþt þ u � rHþ � 4us

13Um
R

A udA
u ¼ 1

RePr
r2Hþ ð2Þ

Here dA ¼ dydz, is the element of cross-sectional area, u is the nor-
malized streamwise velocity component, and us is the mean friction
velocity. The Reynolds number is based on Um;H, and air kinematic
viscosity m, the air Prandtl number Pr is 0.71. The last term on the
left-hand side of Eq. (2) corresponds to �uf@hTwiþ=@xg=13, as stated
by Kasagi et al. [28] in case of turbulent channel flow.

On the other hand, according to the concepts of nonstandard
analysis of turbulence [37–39], the governing equations of the
monad mean velocities can be written as

r � u ¼ 0 ð3Þ
ut þ u � ru ¼ �rpþr2u=ReþPdi1 ð4Þ

where dij is the Kronecker delta tensor, P represents the mean pres-
sure gradient in the x-direction, which can be adjusted dynamically
to maintain the constant mass flux in the SSD flow [42]. The initial
flow field is assumed to be laminar, and perturbed by an approach
incorporating the initial acceleration effect. The streamwise peri-
odic condition is used with the non-slip conditions on the duct
walls. The normalized temperature Hþ is zero on the SSD walls,
and should be identical to ½Pr � u=ð13us=UmÞ� as the initial condition
of the temperature field.
3. Numerical method

The temperature and velocity governing equations (2)–(4) have
the same form of the Navier–Stokes type equations. Hence, the
existing numerical methods are still available, such as the Cheby-
shev polynomial algorithm [43], the finite-difference method in
arbitrary curvilinear orthogonal coordinates [44], the commonly
appreciated finite volume method as described by Patankar [45],
and Papanicolaou and Jaluria [46], and the finite element method
as those appreciated by Khanafer et al. [47]. However, because
the generic characteristics of turbulence shows that the turbulent
temperature and velocity fields must occur in the form of plateaux
separated by sharp cliffs as observed in scalar turbulence [48], in
turbulence prediction, it is therefore necessary to reduce the artifi-
cial error from discretization and computation. Otherwise, the arti-
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Fig. 1. The mean velocity and temperature profiles along the wall bisector plotted
as a function of the wall coordinate. Note that �hþ � 13 �Hþ; yþ ¼ ðyþ 0:5Þus=m, and
the over-bar means the time and x-average. The friction Reynolds number based on
H is 360 in the LES of Madabhushi and Venka [13], 600 in the semi-spectral DNS of
Huser and Biringen [21], and is 612.4 in the present study. The bulk Reynolds
number in the heat transfer experiment of Hirota et al. [55] is 6:7� 104.
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ficial viscous effect will present a spurious diffusion to decrease the
variable fluctuations. Therefore, in this numerical study of forced
heat convection in turbulent regime, we recruit some grid-depen-
dent terms to erase the artificial error in discretization, and in-
crease the accuracy of the pressure potential calculation by
dropping the iteration criterion to a level of about 10�8.

The numerical solutions of the turbulent SSD flow with heat
transfer were found with the accurate projection algorithm PmIII
[49] in a non-uniform staggered grid system. The procedure of
the numerical method has been briefly described elsewhere [50].
Here we further detail the approach of the term recruiting. In the
previous simulation of flow around two identical square cylinders,
a higher-order upwind scheme was described in a staggered grid
system [41]. This scheme has been found to be available in the
study of transitional wake flow at a Reynolds number of 250. It
has however implicitly introduced some artificial diffusion and dis-
persion terms in the finite difference of the non-linear cross-con-
vection terms, such as vuy, and wuz in the momentum equation
for the velocity in the streamwise direction. These terms are grid
dependent, and can be found by Taylor expansion. It is required
to remove the effect from these grid-dependent terms so that the
previously proposed higher-order upwind scheme can be more
suitable for turbulence exploration.

We make an example of seeking them in the finite difference of
the term vuy. In the staggered grid system, since the velocity com-
ponents ½uijk;v ijk� are, respectively, located at grid points
ðxi�1=2; yj; zkÞ, and ðxi; yj�1=2; zkÞ, in the case of v̂ ijkðxi�1=2; yj; zkÞP 0,
the improved higher-order upwind scheme can be written in the
following form

ðvuyÞijk¼ v̂ ijk �ðAþBþCÞuijkþAui;j�1;kþBui;j�2;kþCui;jþ1;k�Dðuð4Þy Þijk
h i

ð5Þ

when dyj ¼ yj � yj�1; s2 ¼ ðdyj�1 þ dyjÞ=dyj, and s3 ¼ dyjþ1=dyj, the
coefficients of the finite difference can be expressed as

B ¼ s3
3 þ s2

3

dyj � D
; C ¼ � s2

2 � s3
2

dyj � D
; A ¼ �Bs2

2 � Cs2
3 ð6Þ

and

D ¼ ½AðdyjÞ
4 þ Bðdyj þ dyj�1Þ

4 þ Cðdyjþ1Þ
4�=24 ð7Þ

where D ¼ s2s3ðs2 � 1Þðs3 þ 1Þðs2 þ s3Þ. Using the Taylor expansion,
it is easy to express the cross-convection velocity by an interpola-
tion with operator Ibijk and a corresponding grid-dependent remain-
der, that means

v̂ ijk ¼ IbijkðvÞ � Rijk þ oð�4Þ

Rijk ¼ ðdxiÞ2IbijkðvxxÞ þ ðdyjdyjþ1ÞIbijk½vyy þ ðdyjþ1 � dyjÞv ð3Þy =6�
n o

=8

IbijkðvÞ ¼ ½bðv ijk þ v i�1;j;kÞ þ ð1� bÞðv i;jþ1;k þ v i�1;jþ1;kÞ�=2 ð8Þ

where dxi ¼ xi � xi�1;b ¼ dyjþ1=ðdyj þ dyjþ1Þ. oð�4Þ denotes a fourth
order cut-off error, Rijk represents the remainder resulted from lin-
ear interpolation in terms of operator ðIbijkÞ. The difference from the
previous scheme given in Ref. [41] lies in the deduction of this inter-
polation remainder, which has obviously enhanced the accuracy of
finite difference for the cross-convection term vuy. Clearly, similar
expressions can be derived for the finite difference of other cross-
convection terms, i.e. wuz in the streamwise momentum equation,
½uvx;wvz� in the transverse momentum equation and ½uwx;vwy� in
spanwise momentum equation.

In addition, for the calculation of intermediate velocities, the
convection terms were treated explicitly, and calculated by a
blocked tri-diagonal matrix acceleration (TDMA) in the streamwise
direction due to the periodic boundary condition. The pressure po-
tential Poisson’s equation was solved by the approximate factor-
ization one (AF1) method [51]. The streamwise periodicity of
pressure potential was appropriately considered in the AF1
iteration.

The temperature equation (2) was solved by time marching. The
implicit second-order Crank–Nicolson for the right-hand side dif-
fusion terms, and fourth-order upwind scheme for the left-hand
side convection terms were used in spatial discretization. The
left-hand side term corresponding to the streamwise variation of
duct wall temperature was treated together with the convective
terms by using the third order Adams–Bashforth scheme in tempo-
ral discretization.

4. Results and discussion

The c-DNS for the turbulent forced heat convection in the SSD
was carried out in the staggered grid system with the grid density
adjusted with a power law and higher grid density near the duct
wall. The streamwise grid is nearly uniform, its grid number was
121, and both the transverse and spanwise grid numbers were
equal to 101. The streamwise length of the computational domain
is equal to 6:41H. The Reynolds number based on the side of square
duct section and bulk velocity was 104. The convergence criterion
for pressure potential iteration was chosen so that the relative er-
ror defined previously [52] should be less than 3� 10�8. The c-DNS
highlights the following issues:

� Predict the time mean and local Nusselt numbers and their root
mean square values for the turbulent forced heat convection in
the SSD under an isoflux peripheral wall heating mode, and fur-
ther evaluate the corresponding availability of the novel turbu-
lence model based on the nonstandard analysis.

� Explore the characteristics of velocity and temperature fluctua-
tions in the turbulent SSD flow, while keeping the numerical vis-
cous effect as low as possible by recruiting grid-dependent
terms with respect to Taylor expansion.

4.1. Turbulence statistics

Since the flow in the streamwise direction is homogeneous, tur-
bulence statistical values were evaluated by averaging in time and x.
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The time range used in the average was from t = 300 to 500, in
which a data sequence with five 10 thousand records was used
in the analysis of turbulence statistics.

The predicted mean friction factor f is about 0.030, implying
that the mean wall shear velocity is linked to the bulk velocity
by ratio us=Um ¼

ffiffiffiffiffiffiffiffi
f=8

p
¼ 0:06124. This wall shear velocity is used

as another velocity scale in results shown in Figs. 1 and 3.
Plotted as the functions of the wall coordinate ðyþÞ, the mean

velocity and the temperature profiles along the wall bisector are
given in Fig. 1. In the core region of the SSD flow,
30 6 yþ 6 Res=2, the predicted mean velocity follows a log-law
with a constant terms of about 7.5 rather than 5.5 in the log-law
of turbulent plane channel flow illustrated by dash-dotted line.
In the sublayer, 0 < yþ 6 5, the predicted mean velocity satisfies
the linear wall law illustrated by dashed curve. In the buffer region,
5 < yþ 6 30, the predicted solid curve passes through the gap be-
tween the small squares and filled circles, which represent the re-
sults of recently published LES and DNS. Since the friction Reynolds
number used in the present study is almost the same as the one
considered in the previous DNS [21], the velocity profile fits with
the results from the previous DNS quite well. The comparison ob-
served in Fig. 1 indicates that the present c-DNS can evidently pre-
dict the mean velocity profile consistently well with the existing
results of computations.

For the mean profile �hþ, the slope (2.80) of the log-law in the
core region is very close to the slope (2.78) found in the turbulent
heat transfer in channel flows [28]. Similar to velocity profile, we
have estimated a larger constant in the log-law, 3.0, as compared
to the log-law constant of Kasagi et al. 2.09. The comparison of
mean profile of hþ with the previous measurement [55,54] is fairly
good. The reason that leads to the deviation in comparison may
come from difference in wall heating condition. In the numerical
prediction, the streamwise heating length is assumed to be infini-
tive due to the use of periodic condition, while in experiment, the
heating length is limited.

It is noted that the temperature at a given point in the compu-
tational domain shows a linear increase trend with time in addi-
tion to its irregular turbulent fluctuation (Fig. 10) due to the
constant heating from the SSD walls. The output data analysis
shows that the increase rate of mean temperature ( �Hþ) is roughly
equal to 4us�u=ð30� 13UmÞ. Using this particular increase rate, data
analysis can output the mean temperature profile insensitive to the
time average period.

The velocity variation bands in the unit of their root mean
square values along the wall bisector was shown in Fig. 2 where
the velocity bands ½u� ¼maxðuÞ �minðuÞ, and ½v � ¼maxðvÞ�
minðvÞ, in which u and v denotes the x-averaged velocities. The
velocity peaks were adjusted so that their mid points have the cor-
responding mean values. It reveals that the chance of velocity fluc-
tuations beyond 2.5 is very small.
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Fig. 2. The velocity variation band plotted as a function of the wall coordinate.
The root mean square (rms) values of velocities given in Fig. 3,
which show the characteristics of the secondary flows in the SSD
flows, have shown a fairly good agreement with the existing
numerical results. The reason causing the visible deviations from
the channel flow c-DNS can be the difference in the Reynolds num-
ber and the flow geometry. The rms of hþ along the wall bisector is
shown by the coarse solid curve in Fig. 4. Comparison was made
between the DNS in Ref. [28]. It is seen that, in the sublayer, the
currently predicted rms value of hþ is slightly higher than that from
the previous DNS for heat transfer in channel flow. Visible devia-
tion occurs in the buffer and the core regions. Another reason is
the differences in the solution method, in which the approach of
discretizing the convection terms in the governing equations has
a significant impact on variables’ rms values, as reported by Liang
et al. [23].

Since the flow is at a large Reynolds number, lower order
schemes in discretization usually introduce grid-dependent artifi-
cial viscous terms, providing a spurious-nonphysical mechanism
to suppress the turbulence fluctuations. In the present simulation,
the recruiting grid-dependent terms are derived and used to de-
crease the artificial viscous effect.
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4.2. Heat transfer

Assuming that the time mean temperature of the air in the do-
main is denoted by Tm;av , the mean Nusselt number of the forced
heat convection in the SSD can be written as

Nuav ¼
13Ts

Tw � Tm;av

1
4

Z
C

@ �Hþ

@n
dC ð9Þ

where C is the boundary of the cross-section, and n is the corre-
sponding inner normal unit vector of C. The present DNS shows that
the mean Nusselt number in the case of isoflux wall heating is
29.38, which is in an excellent agreement with the mean Nusselt
number (28.49) based on the Gnielinski’s empirical expression for
the turbulent forced heat convection in a circular pipe [56], which
had some theoretical foundation in a low-Reynolds number correc-
tion. The Gnielinski’s empirical expression is

Nu ¼ ðRe� 1000ÞPrcf =2

1:0þ 12:7
ffiffiffiffiffiffiffiffiffiffi
cf =2

p
ðPr2=3 � 1:0Þ

ð10Þ
Local Nusselt number and itsrms value

y+

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

Local Nu

Its rms value

Fig. 5. The mean local Nusselt number and its rms value plotted as a function of yþ .
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which is available in the ranges: 0:5 < Pr < 2000, and 2300 < Re
< 5� 106, here cf ¼ f=4, and f is the friction factor. The mean
Nusselt number should be 29.78, if calculated by the empirical
correlation of Sleicher and Rouse [57]

Nu ¼ 5þ 0:015ReaPrb ð11Þ

with

a ¼ 0:88� 0:24=ð4þ PrÞ; b ¼ 0:333þ 0:5e�0:67Pr

for the valid ranges of Pr and Re given by 0:1 < Pr < 104, and
104 < Re < 106. A comparison shows that the relative deviation is
less than 5%.

Shown in Fig. 5, are the mean local Nusselt number and its rms
curves plotted as functions of the transverse coordinate. In the cen-
tral region, 60 6 yþ 6 552:4, the local Nussel number distributes
around the mean value 29.38 in the rise and fall manner. It tends
to zero in a rapid decreasing rate when the wall coordinate gradu-
ally closes to the corner points of the SSD. The wavy distribution of
mean local heat flux is closely dependent on the near wall turbu-
lence (Fig. 6(a)–(d)), its rms value is at a level of 25% of the mean
local Nusselt number in the central region, implying that the heat
transfer through the duct wall should have experienced an inten-
sively irregular oscillating mode. A recent detail numerical study
for channel flow presents a similar evidence, and the results re-
vealed the characteristics of the near wall heat flux [58].

4.3. Turbulent flow fields

Effects on the turbulent flow in a SSD come from the four duct
walls and the wall right corners. The merging of the four boundary
layers is influenced by the mean secondary flow in Fig. 7(a). Here
the mean includes the quadrant average with respect to the center
of the cross-section. It is seen in Fig. 7(a) that the mean secondary
vortex pairs are concentrated in the corner region, and distributed
symmetrically to the corner bisector.

To improve the understanding of the SSD flow, it would be help-
ful to review the coherent motion in shear flow [59]. The previous
visualization for mixing layer of Bernal and Roshko in 1986 indi-
cated that a single row of counter-rotating vortices appeared in a
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slice through a braid, and two rows of counter-rotating vortices lo-
cated on the top and bottom of the spanwise vortex core in a slice
through the vortex core.

For the flow near the bottom wall, two snapshots are made to
show the spanwise vortex structures in the slice of z ¼ 0
(Fig. 6(a) and (b)), with the corresponding instantaneous secondary
vortex structures shown in Fig. 6(c) and (d) for the comparison
convenience. In Fig. 6(a) and (b), prograde vortices are red2 colored,
and retrograde vortices are blue colored. According to the recent
vortex signature study [60,61], it is revealed that there are two pre-
vailing retrograde vortex orientations: (1) in the third quadrant of
a prograde vortex core, (2) in the first quadrant of a prograde vor-
tex core. The former corresponds to the motion of omega-shaped
hairpin vortices, and the latter corresponds to the motion de-
tached-ring like structures. In Fig. 6(a), it can be seen that in the
bottom layer, the prograde voetex is prevailing due to the wall ef-
fect, and a retrograde usually surrounded by several prograde vor-
tices, indicating that the SSD flow has a property of vortical
structure transportation. In Fig. 6(b), at the instant of t = 410, a
spanwise vortex ring appears and encloses a retrograde vortex.

As shown in Fig. 6(c) and (d), the coherent secondary motion in
the slice of x ¼ 0 is found to be more intensive as compared with
the mean motion in Fig. 7(a). The instantaneous secondary vortices
can distribute in the whole cross-section, their motion is coher-
ently involved with the spanwise vortex organizations as shown
in Fig. 6(a) and (b).

Together with the mean secondary flow given in Fig. 7(a), distri-
butions of the fluctuation vorticity ratio, the logarithm of turbu-
lence time scale, and the ratio between the temperature and
velocity dissipation time scales are shown Fig. 7(b)–(d). The turbu-
lence time scale su was defined by

su ¼
3
2

CDku=�u ð12Þ

here CD ¼ 0:09 is a commonly used coefficient in phenomenological
turbulence models [62]. m is the kinematic viscosity of fluid. The tur-
bulence kinetic energy ku and its dissipation rate were defined by
[63]

ku ¼ 0:5u0ju
0
j; ð13Þ

�u ¼ 2msijsij; sij ¼ ð@u0i=@xj þ @u0j=@xiÞ=2 ð14Þ

where sij is the tensor of deformation rate fluctuation. The time
scale of temperature dissipation was defined by

sh ¼
3
2

CDkh=�h ð15Þ

where
2 For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.
kh ¼ 0:5ðh0Þ2; �h ¼ Pr�1mð@h0=@xjÞ2 ð16Þ

Here the superscript ‘+’ is omitted in the definition of kh and �h,
since the temperature normalization does not affect the time scale.
The time ratio R is not coupled with coefficient CD, and R is simply
given by

R ¼ sh=su ð17Þ

As seen in Fig. 7(b)–(d), the mean secondary flow has some influ-
ence on the distributions of the fluctuation vorticity ratio
x1rms=xrms and turbulence time scale logðsuÞ, but a more evident ef-
fect on the time scale ratio. It causes a significant increase of R in the
corner region between the two mean secondary vortices near the
corner bisector.

The illustration of the mean and instantaneous flow fields and
the distributions of some turbulence variables is useful for recog-
nizing some speciality of the turbulent SSD flow at the Re = 104.
4.4. Velocity and temperature fluctuations

Corresponding to the intensively changing turbulent flow fields,
are the significant fluctuations of velocity and temperature of fluid
particles, for those positioned in the wall bisector, the rms curves
have been shown in Figs. 3 and 4. Further, the predicted probability
density functions (PDFs) characterizing the variable fluctuation
behaviors are shown in Figs. 8 and 9, where ur¼ðu�0:5½u�Þ=½u�; v r¼
ðv�0:5½v �Þ=½v�, the velocity bands ½u� ¼maxðuÞ �minðuÞ, and
½v� ¼maxðvÞ �minðvÞ are the same as in Fig. 2. Here u;v have the
streamwise averaged values. The multiple spikes in the PDFs of
the streamwise velocity (Fig. 8(a)) indicate the complexities of
the duct flow, implying the SSD flow has the low-speed and
high-speed streamwise streaks. The PDFs in Fig. 8(a) and (b) sug-
gest that the velocity fluctuates with less relationship with Gauss-
ian distribution.

The joint behavior of velocity fluctuations can be observed in
Fig. 9. The joint PDF is useful for the quadrant analysis of motion
events of fluid particle near the observed points. For the case of
yþ ¼ 5:88 on the wall bisector, as shown in Fig. 9(a), large fluctua-
tion behaviors are mainly concentrated in the second and fourth
quadrant events, indicating that the large amplitude fluid ejections
(the second quadrant events) and sweeps (the fourth quadrant
event) are the prevailing events, which give rise to a positive Rey-
nolds shear stress ð�uvÞ at the observed point. The smaller fluctu-
ations around the origin of the re-scaled velocity plane ður ;v rÞ
follow the joint PDF whose shape likes an hilly island, around
which are many granular planet islands. This means that large
amplitude velocity fluctuations are associated with the coherent
motions of larger vortices.

The joint velocity fluctuation behavior at yþ ¼ 14:49 given in
Fig. 9(b) is similar to that shown in Fig. 9(a) for the behavior at
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yþ ¼ 5:88. The prevailing of the ejection and sweeps again indi-
cates the Reynolds shear stress is positive. In the active coherent
motion region, yþ ¼ 65:80, as indicated in Fig. 9(c), the joint veloc-
ity fluctuation prefers to follow some orbits in the plane, showing
that such fluctuations contain recurrence feature. The traces of the
velocity fluctuation in Fig. 9(d) look like some worm-creeps. Since
the point at yþ ¼ 306:2 in the wall bisector just overlaps the duct
section center, the Reynolds shear stress is zero. The large devia-
tion of shear stresses does not indicate that the instantaneous
streamwise momentum flux transported by the transverse velocity
fluctuation at the point is zero.

The joint PDF distributed zone appears in about elliptic form,
the cross-angle between the primary axis of the ellipse and the ver-
tical coordinate decreases with the distance from the wall. This
indicates that the quadrant events near wall have smaller vertical
velocity fluctuation, with the increase of the distance from the
wall, the re-scaled vertical velocity fluctuation gradually becomes
comparable with the re-scaled streamwise velocity fluctuation.

As shown in Fig. 10, at the two points labeled by yþ ¼ 18:4 and
306.2 on the wall bisector in the streamwise mid cross-section
ðx ¼ 0Þ, the values of Hþ occur irregularly fluctuate, with those in
the time period t 2 ð480;500Þ zoomed in the right-upper corner.
Subjecting the effect from the coherent structures in the buffer
layer yþ 2 ð5;30Þ defined in Ref. [63], the temperature at
yþ ¼ 18:4 fluctuates in a larger magnitude and a lower primary fre-
quency, as compared to the fluctuation in the core region point
(yþ ¼ 306:2). These properties of temperature fluctuation can also
be observed in the corresponding diagram of power spectra versus
frequency (Fig. 11), which was obtained by a code based on the Hil-
bert transform [64]. The power spectrum analysis shows that the
oscillation in the buffer region has larger power spectrum values
(or larger magnitudes), the frequency band is between 0.01 and
5. The frequencies relevant to the temperature oscillation at the
inertia range is around 2. The approximated inertia range of fre-
quency is about from 1 to 2.5, suggesting that the fluctuation with
a frequency lower than ðUm=HÞ can be seen as low frequency oscil-
lation, with those over ð2:5Um=HÞ taken as higher frequency
oscillation.

Due to constant heating, and the periodic streamwise condition
for Hþ, the time average temperature is dependent on the time
period (Fig. 10), this effect of mean temperature increase should
be erased properly in output data analysis. We assume the increase
rate of the mean temperature is proportional to 4us

13Um
�u, by analysis,
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it was found that the proportionality is roughly 1=30, which allows
to obtain the mean temperature that is insensitive to the time per-
iod in averaging.

5. Conclusions

An improved finite difference of the cross-convection terms in
the governing equations of turbulent flows is reported in the
c-DNS of the turbulent forced heat convection in a SSD at a bulk
Reynolds number of 104. The novel scheme is more stable and is
found to be applicable in capturing the turbulence characteristics
of the SSD flow, which has avoided the interruption of artificial
viscosity as far as possible. Using the recent nonstandard analysis
of turbulence, the c-DNS can be performed by recruiting the
grid-dependent interpolation remainder in the calculation of the
cross-velocities. The computed mean Nusselt number is in an
excellent agreement with the value based on the published corre-
lations, with a relative standard deviation less than 5%. The mean
secondary flow significantly increases the ratio between the
temperature and velocity dissipation time scales in the corner re-
gion between the mean secondary counter-rotating vortices. The
probability density functions have been calculated to help under-
standing of velocity fluctuation behaviors. The power spectrum
diagram of temperature show that the frequency band is between
0.01 and 5, with the inertia range about from 1 to 2.5. The satisfac-
tory agreement with the existing DNS results from other numerical
schemes suggests that the novel finite difference scheme has
potentials for efficient and accurate turbulence prediction because
of the higher-precise calculation of the cross-velocities.
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